p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.85C22, C24.528C23, C23.162C24, (C23×C4)⋊17C4, C4○(C24⋊3C4), (C24×C4).10C2, (C2×C42)⋊2C22, C24.122(C2×C4), C23.597(C2×D4), (C22×C4).768D4, C4○(C23.7Q8), C24⋊3C4.18C2, C4○(C23.34D4), C22.53(C23×C4), C22.62(C22×D4), C22⋊4(C42⋊C2), C23.213(C4○D4), C23.34D4⋊65C2, (C22×C4).440C23, (C23×C4).643C22, C23.207(C22×C4), C23.7Q8⋊118C2, C2.C42⋊50C22, C2.1(C22.19C24), (C4×C22⋊C4)⋊4C2, (C2×C4⋊C4)⋊97C22, C4.96(C2×C22⋊C4), (C2×C4)⋊13(C22⋊C4), (C2×C4)○(C24⋊3C4), (C2×C42⋊C2)⋊4C2, (C2×C4).1554(C2×D4), C2.8(C2×C42⋊C2), C22.55(C2×C4○D4), C2.7(C22×C22⋊C4), (C22×C4).489(C2×C4), (C2×C4).622(C22×C4), C22.73(C2×C22⋊C4), (C2×C4)○(C23.7Q8), (C22×C4)○(C24⋊3C4), (C2×C22⋊C4).411C22, (C22×C4)○(C23.7Q8), SmallGroup(128,1012)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 908 in 544 conjugacy classes, 196 normal (12 characteristic)
C1, C2, C2 [×6], C2 [×12], C4 [×8], C4 [×12], C22, C22 [×18], C22 [×68], C2×C4 [×32], C2×C4 [×68], C23, C23 [×18], C23 [×68], C42 [×8], C22⋊C4 [×24], C4⋊C4 [×8], C22×C4 [×2], C22×C4 [×42], C22×C4 [×52], C24, C24 [×6], C24 [×12], C2.C42 [×8], C2×C42 [×4], C2×C22⋊C4 [×12], C2×C4⋊C4 [×4], C42⋊C2 [×8], C23×C4 [×2], C23×C4 [×12], C23×C4 [×8], C25, C4×C22⋊C4 [×4], C24⋊3C4 [×2], C23.7Q8 [×4], C23.34D4 [×2], C2×C42⋊C2 [×2], C24×C4, C25.85C22
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×8], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C4○D4 [×8], C24, C2×C22⋊C4 [×12], C42⋊C2 [×8], C23×C4, C22×D4 [×2], C2×C4○D4 [×4], C22×C22⋊C4, C2×C42⋊C2 [×2], C22.19C24 [×4], C25.85C22
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=e, g2=c, ab=ba, faf-1=ac=ca, ad=da, ae=ea, ag=ga, bc=cb, fbf-1=bd=db, be=eb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
(1 25)(2 14)(3 27)(4 16)(5 32)(6 19)(7 30)(8 17)(9 15)(10 28)(11 13)(12 26)(18 22)(20 24)(21 31)(23 29)
(1 9)(2 14)(3 11)(4 16)(5 32)(6 21)(7 30)(8 23)(10 28)(12 26)(13 27)(15 25)(17 29)(18 22)(19 31)(20 24)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 11 23)(2 7 12 24)(3 8 9 21)(4 5 10 22)(13 29 25 19)(14 30 26 20)(15 31 27 17)(16 32 28 18)
G:=sub<Sym(32)| (1,25)(2,14)(3,27)(4,16)(5,32)(6,19)(7,30)(8,17)(9,15)(10,28)(11,13)(12,26)(18,22)(20,24)(21,31)(23,29), (1,9)(2,14)(3,11)(4,16)(5,32)(6,21)(7,30)(8,23)(10,28)(12,26)(13,27)(15,25)(17,29)(18,22)(19,31)(20,24), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,11,23)(2,7,12,24)(3,8,9,21)(4,5,10,22)(13,29,25,19)(14,30,26,20)(15,31,27,17)(16,32,28,18)>;
G:=Group( (1,25)(2,14)(3,27)(4,16)(5,32)(6,19)(7,30)(8,17)(9,15)(10,28)(11,13)(12,26)(18,22)(20,24)(21,31)(23,29), (1,9)(2,14)(3,11)(4,16)(5,32)(6,21)(7,30)(8,23)(10,28)(12,26)(13,27)(15,25)(17,29)(18,22)(19,31)(20,24), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,11,23)(2,7,12,24)(3,8,9,21)(4,5,10,22)(13,29,25,19)(14,30,26,20)(15,31,27,17)(16,32,28,18) );
G=PermutationGroup([(1,25),(2,14),(3,27),(4,16),(5,32),(6,19),(7,30),(8,17),(9,15),(10,28),(11,13),(12,26),(18,22),(20,24),(21,31),(23,29)], [(1,9),(2,14),(3,11),(4,16),(5,32),(6,21),(7,30),(8,23),(10,28),(12,26),(13,27),(15,25),(17,29),(18,22),(19,31),(20,24)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,11,23),(2,7,12,24),(3,8,9,21),(4,5,10,22),(13,29,25,19),(14,30,26,20),(15,31,27,17),(16,32,28,18)])
Matrix representation ►G ⊆ GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,4,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[2,0,0,0,0,0,1,3,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,1,0],[4,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,1] >;
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4H | 4I | ··· | 4T | 4U | ··· | 4AJ |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | C4○D4 |
kernel | C25.85C22 | C4×C22⋊C4 | C24⋊3C4 | C23.7Q8 | C23.34D4 | C2×C42⋊C2 | C24×C4 | C23×C4 | C22×C4 | C23 |
# reps | 1 | 4 | 2 | 4 | 2 | 2 | 1 | 16 | 8 | 16 |
In GAP, Magma, Sage, TeX
C_2^5._{85}C_2^2
% in TeX
G:=Group("C2^5.85C2^2");
// GroupNames label
G:=SmallGroup(128,1012);
// by ID
G=gap.SmallGroup(128,1012);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=e,g^2=c,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,a*g=g*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations